
 11

Manipulating Managed Execution Manipulating Managed Execution
Runtimes to support Self-Healing Runtimes to support Self-Healing

SystemsSystems
Rean Griffith‡, Gail Kaiser‡Rean Griffith‡, Gail Kaiser‡

Presented by Rean GriffithPresented by Rean Griffith
rg2023@cs.columbia.edurg2023@cs.columbia.edu

‡ ‡ - Programming Systems Lab (PSL) Columbia University- Programming Systems Lab (PSL) Columbia University

mailto:rg2023@cs.columbia.edu

 22

IntroductionIntroduction

 33

OverviewOverview

• MotivationMotivation
• Managed Execution ModelManaged Execution Model
• System ArchitectureSystem Architecture
• How it worksHow it works
• Performing a repairPerforming a repair
• PerformancePerformance
• Conclusions & Future workConclusions & Future work

 44

MotivationMotivation
• Managed execution environments e.g. JVM, CLR Managed execution environments e.g. JVM, CLR

provide a number of application services that provide a number of application services that
enhance the robustness of software systems, enhance the robustness of software systems,
BUT…BUT…

• They do not currently provide services to allow They do not currently provide services to allow
applications to perform consistency checks or applications to perform consistency checks or
repairs of their componentsrepairs of their components

• Managed execution environments intercept Managed execution environments intercept
everything applications running on top of them everything applications running on top of them
attempt to do. Surely we can leverage thisattempt to do. Surely we can leverage this

 55

Managed Execution ModelManaged Execution Model

// Other code
SampleClass s = new SampleClass();
s.doSomethingUseful();
// More code

Find member
doSomethingUseful()

in memory

Jump to JIT-Compiled
native assembly version

of the method

 Method
body JIT

Compiled?

Do JIT-Compile
of Bytecode

Execute

Yes

No

Application/Module
Load

Class Load

Method Invoke

JIT Compile
(if necessary)

Function Exit

Function Enter

1

2

3

4

5

6

 66

Runtime Support RequiredRuntime Support Required
JVM v5.0CLR v1.1Facility

NoYesThe ability to have some control
over the JIT-Compilation process

Coarse-
grained
(partial)

Fine-
grained
(full)

The ability to make controlled
changes or extensions to metadata
e.g. new function bodies, new type,
type::method references

YesYesThe ability to obtain information
(metadata) about the application,
types, methods etc. from profiler

JVMTI
(no JIT)

Profiler
API

The ability to receive notifications
about current execution stage

 77

System ArchitectureSystem Architecture

 88

Our Prototype’s Model of OperationOur Prototype’s Model of Operation

Application/Module
Load

Class Load

Method Invoke

JIT Compile
(if necessary)

Function Exit

Function Enter

1

2

3

4

5

6

Augment type metadata
e.g. define new method stubs as
repair-engine hooks

Execution Runtime

Fill in method stubs, edit/replace
method body, insert jumps into
repair engine, undo changes

RepairEngine::RepairMe(this)
Repair/Consistency check

 99

Phase I – Preparing Shadow Phase I – Preparing Shadow
MethodsMethods

• At module load time At module load time
but before type but before type
definition installed definition installed
– Extend type Extend type

metadata by metadata by
defining with new defining with new
methods which will methods which will
be used to allow a be used to allow a
repair engine to repair engine to
interact with interact with
instances of this instances of this
typetype

SampleMethod
RVA

Bytecode
method

body

_SampleMethod
RVA

After

SampleMethod
RVA

Bytecode
method

body

Before

 1010

Phase II – Creating Shadow Phase II – Creating Shadow
MethodsMethods

• At first JIT-At first JIT-
CompilationCompilation
– Define the body Define the body

of the shadow of the shadow
method and re-method and re-
wire some wire some
things under-things under-
the-hoodthe-hood

SampleMethod
RVA

Bytecode
method

body

_SampleMethod
RVA

Before

SampleMethod
RVA

New
Bytecode
method

body

Call
_Sample
Method

_SampleMethod
RVA

After

Bytecode
method

body

SampleMethod(args)
 <room for prolog>
 push args
 call _SampleMethod(args)
 <room for epilog>
 return value/void

 1111

Performing a RepairPerforming a Repair

• Augment the wrapper to insert a jump into a Augment the wrapper to insert a jump into a
repair engine at the repair engine at the control point(s)control point(s) before before
and/or after a shadow method calland/or after a shadow method call

SampleMethod(args)
 RepairEngine::RepairMe(this)
 push args
 call _SampleMethod(args)
 RepairEngine::RepairMe(this)
 return value/void

 1212

Performance – No Repairs ActivePerformance – No Repairs Active

 1313

Overheads on the Managed Overheads on the Managed
Execution CycleExecution Cycle

 1414

ContributionsContributions

• Framework for dynamically attaching/detaching Framework for dynamically attaching/detaching
a repair engine to/from a target system a repair engine to/from a target system
executing in a managed execution environmentexecuting in a managed execution environment

• Prototype which targets the Common Language Prototype which targets the Common Language
Runtime (CLR) and supports this dynamic Runtime (CLR) and supports this dynamic
attach/detach capability with low runtime attach/detach capability with low runtime
overhead (~5%)overhead (~5%)

 1515

LimitationsLimitations
• Repairs can be scheduled but they depend on Repairs can be scheduled but they depend on

the execution flow of the application to be the execution flow of the application to be
effectedeffected
– Deepak Gupta et al. prove that it is un-decidable to Deepak Gupta et al. prove that it is un-decidable to

automatically determine that “now” is the right time for a repairautomatically determine that “now” is the right time for a repair
– Programmer-knowledge is needed to identify “safe” control-Programmer-knowledge is needed to identify “safe” control-

points at which repairs could be performedpoints at which repairs could be performed
– The “safe” control points may be difficult to identify and may The “safe” control points may be difficult to identify and may

impact the kind of repair action possibleimpact the kind of repair action possible

• Primarily applicable to managed execution Primarily applicable to managed execution
environmentsenvironments
– Increased metadata availability/accessibilityIncreased metadata availability/accessibility
– Security sandboxes restrict the permissions of injected bytecode Security sandboxes restrict the permissions of injected bytecode

to the permissions granted to the original applicationto the permissions granted to the original application

 1616

Conclusions & Future WorkConclusions & Future Work
• Despite being primarily applicable to managed Despite being primarily applicable to managed

execution environments, these techniques may execution environments, these techniques may
help us “Watch the Watchers” help us “Watch the Watchers”
– the management infrastructure we are building is the management infrastructure we are building is

likely to be written in managed code (Java, C#) likely to be written in managed code (Java, C#)
running in the JVM, CLR mainly because these running in the JVM, CLR mainly because these
environments provide application services that environments provide application services that
enhance the robustness of managed applicationsenhance the robustness of managed applications

• On the to-do list:On the to-do list:
– Continue working on the prototype for the JVM so we Continue working on the prototype for the JVM so we

can compare the performance and generalize the can compare the performance and generalize the
runtime support requirements listed earlierruntime support requirements listed earlier

– Do a real case study to see what issues we run into Do a real case study to see what issues we run into
with respect to identifying and leveraging “safe” with respect to identifying and leveraging “safe”
control points, the implications of architectural stylecontrol points, the implications of architectural style

 1717

Comments, Questions, QueriesComments, Questions, Queries

Thank YouThank You

Contact: rg2023@cs.columbia.eduContact: rg2023@cs.columbia.edu

 1818

Extra slidesExtra slides

 1919

MotivationMotivation

Un-managed
execution

Self-healing
systems

Managed
execution

Managed
execution

+
Execution

Environment
extensions

• Managed execution environments e.g. JVM, CLR provide Managed execution environments e.g. JVM, CLR provide
a number of application services that enhance the a number of application services that enhance the
robustness of software systems BUT… robustness of software systems BUT…

• They do not currently provide services to allow They do not currently provide services to allow
applications to perform consistency checks or repairs of applications to perform consistency checks or repairs of
their componentstheir components

• Managed execution environments intercept everything Managed execution environments intercept everything
applications running on top of them attempt to do. applications running on top of them attempt to do.
Surely we can leverage thisSurely we can leverage this

 2020

Our Prototype’s Model of OperationOur Prototype’s Model of Operation

Application/Module
Load

Class Load

Method Invoke

JIT Compile
(if necessary)

Function Exit

Function Enter

1

2

3

4

5

6

Augment type metadata
e.g. define new method stubs as
repair-engine hooks

Execution Runtime

Fill in method stubs, edit/replace
method body, insert jumps into
repair engine, undo changes

Metadata extensions e.g. add
references to new modules,

types and methods

RepairEngine::RepairMe(this)
Repair/Consistency check

JIT-Control API e.g.
request method re-JIT

